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Abstract

With the popularity of social media, detecting
sentiment from multimodal posts (e.g. image-
text pairs) has attracted substantial attention
recently. Existing works mainly focus on fus-
ing different features but ignore the challenge
of modality heterogeneity. Specifically, dif-
ferent modalities with inherent disparities may
bring three problems: 1) introducing redundant
visual features during feature fusion; 2) caus-
ing feature shift in the representation space; 3)
leading to inconsistent annotations for differ-
ent modal data. All these issues will increase
the difficulty in understanding the sentiment of
the multimodal content. In this paper, we pro-
pose a novel Multi-View Calibration Network
(MVCN) to alleviate the above issues system-
atically. We first propose a text-guided fusion
module with novel Sparse-Attention to reduce
the negative impacts of redundant visual ele-
ments. We then devise a sentiment-based con-
gruity constraint task to calibrate the feature
shift in the representation space. Finally, we
introduce an adaptive loss calibration strategy
to tackle inconsistent annotated labels. Exten-
sive experiments demonstrate the competitive-
ness of MVCN against previous approaches
and achieve state-of-the-art results on two pub-
lic benchmark datasets.

1 Introduction

Multimodal sentiment detection(Xu, 2017; Xu and
Mao, 2017) aims to explore the sentiment embed-
ded in the multimodal contents, such as text, im-
ages, and videos. With the growth of social media,
it shows broad applications for the understanding
of one’s position, attitude, or opinion towards an
entity, person, or topic, which has attracted sub-
stantial attention from both academic and industrial
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Figure 1: Examples of multimodal sentiment detection.

communities. In this paper, we focus on detecting
the sentiment of multimodal posts in social media.
As shown in Figure 1, the model is required to in-
fer the human sentiments given the image and text
pairs.

Previous works mainly focus on how to integrate
modalities and have achieved astonishing progress.
Earlier works apply concatenation to fuse different
features, such as Xu (2017); Xu and Mao (2017).
To promote the fusion, Yang et al. (2020); Yu and
Jiang (2019); Kumar and Vepa (2020); Xu et al.
(2018) construct different modules to realize deeper
multimodal interaction. However, these methods
of viewing different modalities in the same light
neglect the modality heterogeneity, hindering the
performance of the model. Although CLMLF (Li
et al., 2022) tries to apply contrastive learning to
alleviate this problem, it is in coarse granularity and
only considers feature level, which is insufficient
to address the issue of feature shift.

Modality heterogeneity is mainly caused by the
modality gap, which has been discussed in some
related multimodal research (Hazarika et al., 2020;
Lin and Hu, 2022; Liang et al., 2022; Radford et al.,
2021). In multimodal sentiment detection, it is
because image modality often has less informa-
tion and more redundant features compared to text
modality. As shown in Figure 1, only a few visual
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elements reveal sentiment information(e.g., people
smile, ill dog), causing redundant visual elements
and low information density for the sentiment. In
contrast, text modality is more indicative of sen-
timent owing to higher information density (Tsai
et al., 2019; Sun et al., 2021). Consequently, this
heterogeneity across different modalities will bring
difficulty in understanding the sentiment of multi-
modal content.

Concretely, the ignorance of modality hetero-
geneity will directly cause three problems: a) It
takes sparse and noisy visual features into fusion
and causes confusion in understanding sentimental
information. b) Integrating modalities of differ-
ent properties will further lead to the multimodal
feature shift and makes the model capture spuri-
ous correlations between multimodal features and
sentiments. c) As mentioned by Niu et al. (2016);
Yang et al. (2021), it will affect the data annota-
tors to vote inconsistent labels for unimodal, which
leads to uncertain annotated labels and weaken the
label confidence. Taking MVSA-Single (Niu et al.,
2016) for example, approximately 47% of the sam-
ples suffer from inconsistent annotated labels.

To tackle the above problems systematically,
we propose a Multi-View Calibration Network
(MVCN) from three different views:

(1) To avoid sparse and redundant visual features
of direct integrating modalities (Li et al., 2022), we
propose a Text-Guided Fusion (TGF) module to
leverage text data to dominate the fusion process.
Specially, we propose Sparse-Attention mechanism
using sparsemax (Martins and Astudillo, 2016) to
automatically eliminate redundant visual features
and capture the essential parts of the image with
respect to the sentiment.

(2) To further calibrate the feature shift, we
propose a Sentiment-based Congruity Constraint
(SCC) task to restrain representation space. In the
SCC task, we propose relative distance to gather
multimodal features around the corresponding sen-
timental centroids estimated with samples’ labels.
In addition, to overcome the limitation of the mini-
batch, we also introduce Accumulating Calibra-
tion (AC) strategy to accumulate sampling infor-
mation, thus computing the sentiment centroids
from a global perspective. Compared to contrastive
learning (Li et al., 2022), SCC has more strength to
calibrate the feature shift for it brings sentimental
semantic labels from a global perspective.

(3) To alleviate uncertain annotated labels mis-

leading the model during the training stage, we
also introduce an adaptive loss calibration (ALC)
strategy to calibrate the training loss in the senti-
ment detection task, where the detection model is
forced to be less confident for uncertain annotated
labels. The experiments conducted on different
benchmark datasets (Niu et al., 2016; Cai et al.,
2019) show that MVCN has significantly improved
the performance on all metrics compared with pre-
vious state-of-the-art models. In summary, the key
contributions of this paper are as follows:

• We introduce a novel Multi-View Calibration
Network (MVCN) including Text-Guided Fu-
sion module, Sentiment-based Congruity Con-
straint, and Adaptive Loss Calibration strategy
for multimodal sentiment detection to system-
atically solve the problems of modality het-
erogeneity from different views.

• The thorough experiments show that MVCN
improves the performance over all metrics and
achieves state-of-the-art on two benchmark
datasets (Niu et al., 2016; Cai et al., 2019).

2 Methodology

The architecture of the proposed multi-view cal-
ibration network (MVCN) is shown in Figure 2.
Generally, MVCN consists of text-guided fusion
module and two paralleled sub-tasks. The two par-
alleled sub-tasks are sentiment classification and
sentiment-based congruity constraint respectively.

2.1 Text-Guided Fusion Module
As shown in Figure 2, Text-Guided Fusion Module
contains three components: Unimodal Encoders,
Text-Guided Unit, and Reduction Unit.

Unimodal Encoders. To obtain visual and tex-
tual features for multimodal fusion, we apply two
different unimodal encoders to extract their repre-
sentations. For text modality, we use the pretrained
BERT (Jacob Devlin, 2019) model as the text en-
coder to obtain the text representation. Given a
sequence of text T = {t1, t2, ..., tnt}, where nt is
the number of text length, the output of the BERT
model can be defined as:

Xt = {EC , E1, E2, ..., Ent} = BERT (T ; θbertt )
(1)

where EC ∈ Rdt is the embedding of the CLS
token and θbertt denotes the parameters of the BERT
model. For image modality, we use the pretrained
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Figure 2: The overall architecture of the proposed model MVCN.

ViT model (Dosovitskiy et al., 2020) as the image
encoder to obtain the image representation. Given
an image I , the output of the ViT model can be
defined as:

Xi = {IC , I1, I2, ..., Ini} = V iT (I; θviti ) (2)

where ni is the length of the image representation
and θV iT

t denotes the parameters of the ViT model.
Text-Guided Unit (TGU). Taking the extracted

image features Xi and the text features Xt as in-
puts, we perform multimodal fusion by passing
the inputs through N layers stacking Text-Guided
Unit (TGU). For each layer of TGU, Xt is first fed
into a self-attention (α) as query, key, and value
to generate text-aware feature Xf . We then in-
put Xi and Xf to a Sparse-Attention (γ) layer
to obtain text-guided visual sparse features Xg,
and finally apply a feed-forward network (FFN)
for Xg to produce the TGU output. Here, we
design Sparse-Attention in two places: (1) We
use the textual features to attend to visual fea-
tures and get text-guided features. (2) We nor-
malize attention weight with sparsemax (Martins
and Astudillo, 2016), thus obtaining sparse pos-
terior attention weights, where the weight for re-
dundant visual features are set to 0. Moreover, in-
spired by previous works (Rahman et al., 2019;
Yuan et al., 2022) that leverage pretrained lan-
guage model to enhance the ability of capturing
multimodal context, we initialize TGU with the
weight of the pretrained BERT. In the formula,
the output of N th layer TGU can be defined as:
TGU(Xt, Xi)

N = [Xf = α(Xt, Xt, Xt), Xg =
γ(Xf , Xi, Xi), FFN(Xg)].

Reduction Unit (RU). To get the multimodal
representation Q ∈ Rdt for sentiment classifica-
tion, we follow Li et al. (2022) and use stacked at-
tention layer and fully-connected layer with GELU
activate function (Hendrycks and Gimpel, 2016) as
Reduction Unit to perform dimensionality reduc-
tion for the features.

2.2 Sentiment Congruity Constraint (SCC)
Intuitively, samples’ features Q with the same senti-
mental labels should be closer in the representation
space. However, feature shift caused by modality
heterogeneity hinders this trend and makes it dif-
ficult to capture correlations between multimodal
features and sentiments. To address this problem,
we take advantage of label information to estimate
sentimental centroids, then restrict the distance be-
tween the samples and their centroids, thus calibrat-
ing the feature shift.

Here, we first employ a fully-connected layer to
map multimodal representation Q to normalized
representations Q́ for the SCC task. Then, we com-
pute the positive centroid (C0), the neutral centroid
(C1) and the negative centroid (C2) of the repre-
sentation Q́ during training stage. Let 0,1,2 denote
the positive label, neutral label, and negative label,
the formula for computing centroids is defined as:

C(0|1|2) =

∑B
j=1 I(Y (j) = (0|1|2)) · Q́j
∑B

j=1 I(Y (j) = (0|1|2))
(3)

where B is the number of all the candidate comput-
ing samples, I(.) is an indicator function, and Q́j

and Y (j) are the representation and Ground-Truth
label respectively of the j-th sample.
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To restrict the distance between the samples and
their corresponding centroids, an intuitive idea is to
minimize absolute distance, such as L2 loss. How-
ever, we find it causes all the samples to get too
close to their centroids and completely eliminates
data distribution, which makes the training hard to
converge. To tackle this issue, we propose a relative
L2 loss to measure the distance. Here, we first cal-
culate the absolute L2 distance D = {d1, ..., dB}
between the centroid C and the multimodal repre-
sentation Q́ for a batch:

D =
{∥Q́i − CY (i)∥22}Bi=1√

ι
(4)

where Y (i) represents the ground-truth label of the
ith sample, ι is the feature dimension, and

√
ι serve

as a scale factor. We then normalize the absolute
distance to a relative distance and optimize the SCC
task with the following formula:

Lscc = −
B∑

i=1

log(
exp(−di)∑B
i=1 exp(−di)

) (5)

Accumulating calibration strategy. Neverthe-
less, there still exist two problems to optimize the
SCC task because of the limitation of the mini-
batch. On the one hand, computing centroid for
iterating mini-batch results in a frequently updated
centroid. On the other hand, the samples in a mini-
batch are insufficient to estimate an accurate cen-
troid. To solve this problem, we propose an accu-
mulating calibration strategy to enlarge the comput-
ing space and narrow the change for the samples.

We first employ an auxiliary accumulating TGF
module (denoted as TGF’) to produce sufficient rep-
resentations Qm as candidate computing samples
for centroids in advance. To accumulate comput-
ing information, we then build a queue to restore
all the representations. The queue is dynamically
updated by replacing the premier mini-batch with
the current mini-batch during training for each it-
eration. Thus, we can estimate stable and slow-
updated centroids with Equation 3 from a more
global perspective. Here, to guarantee training sta-
bility, we leverage the momentum optimization (He
et al., 2020; Li et al., 2021) to slowly update TGF’,
which can be defined as:

θm ← βθm + (1− β)θt (6)

where θm denotes the parameters of the accumu-
lating TGF’, θt denotes the parameters of the TGF
module and β ∈ [0, 1) is a balance parameter.

2.3 Sentiment Classification (SC)

For the sentiment classification task, we feed mul-
timodal representation Q ∈ Rdt into the fully con-
nected layer with softmax function to predict the
logits. However, directly optimizing this task with
Cross Entropy (CE) as previous work still suffers
from the issue of uncertain annotated labels during
the training stage.

Adaptive loss calibration (ALC) strategy. To
overcome the above issue, we design a simple
but effective strategy, adaptive loss calibration. It
forces the detection model to decrease confidence
for the training examples of inconsistent annotated
labels, thus calibrating the loss. To better elaborate
the strategy, we first define cross entropy loss uti-
lized in most previous works. Suppose that pi ∈
{p1, p2, ..., pK} denotes the predicted logit and
yi ∈ {y1, y2, ..., yK} represents the ground-truth,
CE loss can be defined as L = −∑K

i yilog(pi),
where yi ∈ {0 , 1} , pi ∈ [0 , 1] and K denotes
the number of categories. Different from label
smoothing (Szegedy et al., 2016), we first leverage
unimodal labels provided by the datasets to adap-
tively adjust the confidence factor α ∈ {0, 0.1},
then normalize the ground-truth probability. Intu-
itively, it makes the model becomes confident about
its ground-truth by setting α as 0. In the formula,
we normalize the ground-truth probability ŷi for
each label as:

ŷi = (1− α) · I(yi = 1) + (
α

K − 1
) · I(yi = 0)

(7)
where I(.) is a indicator function. Moreover, the
loss function Lsc can be reformatted as:

Lsc =
∑

((1− α) ∗ Li · I(yi = 1)

+α · Li · I(yi = 0))
(8)

2.4 Training Loss

We optimize the above two tasks with total loss L:

L = λscLsc + λsccLscc (9)

where λsc and λscc are hyper-parameters to balance
the different training losses.

3 Experiments

In this section, we first introduce the experimental
setup and report the experimental results, then con-
duct the ablation study and visualization analysis.
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Figure 3: The training curves for the average seman-
tic distance between the samples and corresponding
centroids in (a), and the accuracy in (b) with different
constraint methods. Here, aL2 and rL2 represent opti-
mizing SCC with absolute L2 and relative L2.

3.1 Datasets

All our experiments were conducted on three public
datasets: MVSA-Single (Niu et al., 2016), MVSA-
Multiple (Niu et al., 2016) and HFM (Cai et al.,
2019). Here, we give a brief introduction to these
datasets and dataset statistics are shown in Table 2.

MVSA-Single, MVSA-Multiple. MVSA-
Single and MVSA-Multiple are popular text-image
sentiment datasets crawled from Twitter, where
MVSA-Multiple is an upgraded version of MVSA-
Single and contains more text-image pairs. Both
of them have three categories: positive, neutral,
and negative. For fair comparison, the two MVSA
datasets are processed in the same way as Xu and
Mao (2017).

HFM. HFM has two sentimental categories: pos-
itive and negative. We follow Cai et al. (2019) and
adopt the same preprocessing method for exper-
iments, which has been widely used in previous
works.

3.2 Implementation Details

For feature extraction, we use 12-layer visual trans-
former ViT-B/16 (Dosovitskiy et al., 2020) as vi-
sual encoder and BERT-base (Jacob Devlin, 2019)
as textual encoder. The text-guided fusion encoder
is composed of 6 stacked text-guided units. In
ALC, the confidence factor is set as 0 or 0.1 accord-
ing to unimodal labels. For Sentiment Congruity
Constraint, the queue sizes of accumulating calibra-
tion are set as 3611, 13624, and 19816 for MVSA-
Single, MVSA-Multiple, and HFM respectively.

During the training stage, the learning rate is
set to 2e-5. We train the model for 10 epochs

1Considering CLMLF brings extra data for data augmen-
tation, to evaluate capacity of the model, we also report the
results without extra data for fair comparison.

with batch size of 16, 32, and 32 for MVSA-
Single, MVSA-Multiple, and HFM. In addition,
we adopt AdamW optimizer with ϵ of 1e− 8 and
β of (0.9, 0.999). For loss function, both hyper-
parameters λsc and λcc are set to 1.0. Following
previous settings, we adopt ACC and Weighted
F1 as the evaluation metrics for MVSA datasets
and Macro-F1 and ACC for HFM to evaluate the
performance of the model.

3.3 Baselines
To fully validate the performance of MVCN, we
select both unimodal and multimodal baselines.

Unimodal Baselines. For text modality, we
choose CNN (Kim, 2014), Bi-LSTM (Zhou et al.,
2016) and BERT (Jacob Devlin, 2019) as baselines
since they are popular models for text classification.
For image modality, ResNet (He et al., 2016) and
ViT (Dosovitskiy et al., 2020) are selected for their
superior capability for image classification.

Multimodal Baselines. For MVSA-∗ datasets,
the compared baselines include: MultiSentiNet
(Xu and Mao, 2017) that designs an attention-
based semantic network for multimodal senti-
ment analysis; HSAN (Xu, 2017) applying a hi-
erarchical semantic attentional network for mul-
timodal sentiment analysis; Co-MN-Hop6 (Xu
et al., 2018), employing a co-memory network to
iteratively model the interactions between multi-
ple modalities; MGNNS (Yang et al., 2021) uti-
lizing a multi-channel graph neural networks with
sentiment-awareness for image-text sentiment de-
tection. CLMLF (Li et al., 2022) is the previous
SOTA model that aligns and fuses the text and im-
age modalities through contrastive learning. For
HFM datasets, we compare two variants of Concat
(Schifanella et al., 2016): Concat(2) concatenates
text and image, while Concat(3) brings extra image
attribute features; MMSD (Cai et al., 2019) fusing
text, image, and image attributes with a multimodal
hierarchical framework; and D&R Net (Xu et al.,
2020) that fuses text, image, and visual attributes
by the decomposition and relation network.

3.4 Main Results
The comparison between MVCN and the baselines
is demonstrated in Table 1. Obviously, the text-
only model is more competitive with image-only
methods. It indicates that the image modality is
less helpful and contains more redundant features
compared to text modality, which supports our in-
tuition of eliminating redundant visual features. In
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Modality Model MVSA-Single MVSA-Multiple Model HFM
Acc F1 Acc F1 Acc F1

Text
CNN 0.6819 0.5590 0.6564 0.5766 CNN 0.8003 0.7532

BiLSTM 0.7012 0.6506 0.6790 0.6790 BiLSTM 0.8190 0.7753
BERT 0.7111 0.6970 0.6759 0.6624 BERT 0.8389 0.8326

Image
ResNet-50 0.6467 0.6155 0.6188 0.6098 ResNet-50 0.7277 0.7138

ViT 0.6378 0.6226 0.6194 0.6119 ViT 0.7309 0.7152

Multimodal

MultiSentiNet 0.6984 0.6984 0.6886 0.6811 Concat(2) 0.8103 0.7799
HSAN 0.6988 0.6690 0.6796 0.6776 Concat(3) 0.8174 0.7874

Co-MN-Hop6 0.7051 0.7001 0.6892 0.6883 MMSD 0.8344 0.8018
MGNNS 0.7377 0.7270 0.7249 0.6934 D&R Net 0.8402 0.8060
CLMLF 0.7533 0.7346 0.7200 0.6983 CLMLF 0.8543 0.8487
CLMLF1 0.7378 0.7291 0.7112 0.6863 CLMLF1 0.8489 0.8446
MVCN 0.7606 0.7455 0.7207 0.7001 MVCN 0.8568 0.8523

Table 1: Experimental results of different models on MVSA-Single, MVSA-Multiple and HFM datasets.

Dataset Label Train Val Test

MSVA-S
Positive 2147 268 268
Neutral 376 47 47

Negative 1088 135 135

MSVA-M
Positive 9056 1131 1131
Neutral 3528 440 440

Negative 1040 129 129

HFM
Positive 8642 959 959
Negative 11174 1451 1450

Table 2: Dataset statistics for MVSA-Single, MVSA-
Multiple and HFM.

addition, the multimodal models surpass the uni-
modal models because of fusing more information.
Overall, MVCN achieves state-of-the-art with a
considerable performance gain over other methods,
which indicates the necessity of tackling modality
heterogeneity from different views. Specially, we
find that MVCN achieves better results on MSVA-
Single compared to the other two datasets. We
conjecture that small dataset suffers more of the
modality heterogeneity problem due to lack of data
diversity.

3.5 Ablation Study

To investigate the effectiveness of each module, we
conduct an ablation study in Table 3. Firstly, com-
pared to the MFS model that equally fuses the im-
age and text features, it is straightforward that TGF
module can aid sentiment detection since it elim-
inates redundant visual features. In addition, the
model equipped with Sentiment-based Congruity
Constraint (SCC) brings a significant improvement,

implying the importance of calibrating feature shift
with congruity constraint. And accumulating cali-
bration (AC) strategy by additionally augmenting
SCC with more accurate and stable centroids, con-
sistently improves performance. Furthermore, it
can be observed that ALC strategy can further boost
performance, demonstrating ALC is an effective
way to reduce the impact of the uncertain annotated
labels. Finally, MVCN equipped with all novel
modules achieves the best performance, illustrating
the effectiveness of all the above modules.

4 Analysis

4.1 Discussion of Components
Variants of Text-Guided Unit. To verify the de-
sign for Text-Guided Unit in TGF, we evaluate the
performance of TGU variants in Table 4. Here,
“w/ softmax” denotes Self-Attention, while “w/
spm” represents we normalize attention weight
with sparsemax. “w/ pretrain” and “w/o pretrain”
indicate whether the guided unit initialized with
the pretrained BERT weight or not. From the table,
we observe “w/ spm” shows superiority compared
to “w/ softmax”, indicating Sparsemax-Attention
boosts the performance of the model by eliminat-
ing noisy visual features. Additionally, “w/ pre-
train” can further promote the performance, which
is consistent with previous works that pretrained
language models can enhance the capacity for cap-
turing multimodal context.
Effectiveness of SCC. In Figure 3, we plot the
curves during training to explore why we apply
relative L2 distance to optimize SCC. From Figure
3 (a), “w/ SCC(aL2)” that applies absolute L2 dis-
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Model MVSA-Single MVSA-Multiple HFM
Acc F1 Acc F1 Acc F1

BERT 0.7111 0.6970 0.6759 0.6624 0.8389 0.8326
ViT 0.6378 0.6226 0.6194 0.6119 0.7309 0.7152
MFS 0.7217 0.7205 0.7063 0.6851 0.8434 0.8375
TGF 0.7396 0.7355 0.7095 0.6887 0.8493 0.8451
TGF, SCC 0.7515 0.7403 0.7158 0.6929 0.8522 0.8499
TGF, SCC+AC 0.7563 0.7422 0.7188 0.6971 0.8568 0.8523
TGF, SCC+AC, ALC 0.7606 0.7455 0.7207 0.7001 - -

Table 3: Ablation results of our MVCN. Here, MFS denotes equally fusing the image and text features as Li et al.
(2022). And TGF, SCC, AC, ALC are respectively our four designs: text-guided fusion module, sentiment-based
congruity constraint task, accumulating calibration strategy, and adaptive loss calibration strategy. Note that the
experiment for the ALC model on the HFM dataset is missing due to the absence of the unimodal labels.

TGF MVSA-Single HFM
Acc F1 Acc F1

w/ softmax 0.7365 0.7339 0.8476 0.8427
w/ spm 0.7396 0.7355 0.8493 0.8451
w/o pretrain 0.7232 0.7148 0.8306 0.8217
w/ pretrain 0.7396 0.7355 0.8493 0.8451

Table 4: Ablation results of TGF and we remove ALC
and SCC modules here.

tance dramatically narrows the distance between
the samples and the centroids to an extremely low
level. However, it hinders the training and eventu-
ally leads to the model being hard to optimize in
Figure 3 (b). Because it will completely eliminate
data distribution and make the data samples lose
correlation with each other by directly minimizing
L2 distance. Conversely, “w/ SCC(aL2)” that uti-
lizes relative L2 distance can reduce the semantic
distance to a reasonable extent, and more impor-
tantly, maintain the data distribution. Therefore, it
ensures the SCC task can be optimized and the ac-
curacy of “w/ SCC(rL2)” in Figure 3 (b) gradually
increases during training.

Different Loss Calibration Strategies. To explore
the effectiveness of ALC, we compare different
loss calibration strategies in Table 5. It shows label
smoothing (LS) only brings slight improvement
since it avoids overfitting and strengthens the ro-
bustness of the model. However, LS can not handle
the label problem caused by modality heterogeneity.
Compared to the LS, our proposed ALC exhibits
superiority and outperforms LS in performance,
verifying it is necessary to mitigate the adverse
effects of inconsistent labels.

Dataset Strategy ACC F1

MSVD-Single
- 0.7563 0.7422

LS 0.7579 0.7436
ALC 0.7606 0.7455

Table 5: Results with adaptive loss calibration (ALC)
and label smoothing (LS). Note − represents the model
without any strategy.

4.2 Visualization

Sparse-Attention Visualization. To verify the ad-
vantage of Sparse-Attention in the TGF module,
we visualize the attention weight in Figure 4. Com-
pared to Self-Attention, the sampling cases show
Sparse-Attention captures the essential parts of the
image with respect to the sentiment and meanwhile
attenuates the negative effect of redundant visual
features. As the example in Figure 4(a), the model
paid more attention on the “ill dog” in the image
for it reflects negative sentiment, certifying that the
model can focus the sentimental regions in the im-
age and avoid the interference of irrelevant objects.
This also confirms it is necessary to eliminate re-
dundant visual features, reinforcing the importance
of Sparse-Attention.
Feature Distribution Visualization. In order to
visually demonstrate the superiority of SCC task
with AC strategy, we visualize the feature distribu-
tion on the Multiple-Single dataset with contrastive
learning (Li et al., 2022) and SCC. Here, we apply
T-SNE2 algorithm to perform dimensionality re-
duction for the feature, obtaining a 2-dimensional
feature vector distribution visualized in Figure 5.
From Figure 5(b), we observe that the SCC task
forces samples belonging to the same category to

2https://github.com/mxl1990/tsne-pytorch
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Figure 4: Attention visualization for sampling cases
with Self-Attention (the upper one) and Sparse-
Attention in TGF (the lower one).

Figure 5: Visualization of representation. Different
colored dots represent samples with different categories.

gather around their corresponding centroids. Con-
versely, Figure 5(a) shows that when we remove
SCC task, the degree of data aggregation is less
obvious. The reason for this phenomenon is that,
compared to contrastive learning, the SCC taking
sentimental labels into consideration to constrain
the distribution from a more global perspective, is
more capable of calibrating the feature shift. Hence,
this strength facilitates the MVCN to learn the dis-
tinguished features in representation space and im-
prove the performance of the model.

4.3 Case Study
In Figure 6, we conduct a case study for MVCN
and the previous SOTA model CLMLF. We find
that for these complicated and confusing cases, it is
difficult for CLMLF to capture the user’s sentiment
of samples because of its limitations in handling
modality heterogeneity. For example, in the first
case, although the phrases (e.g., vibrant colors) in
texts represent specific sentiments, CLMLF was
still misled by sparse visual sentimental informa-

Figure 6: Case Study of MVCN and CLMLF.

tion. For the following two cases in Figure 6, we
find the text may express negative sentiments, and
images contain elements (e.g., serious man, smil-
ing man) that reflect sentiments. However, CLMLF
fails to predict the real sentiment due to modality
heterogeneity. In contrast, our model can distin-
guish these cases for the corresponding sentiment,
which also proves the advantage of tackling modal-
ity heterogeneity from different views.

5 Related Work

In this section, we introduce the background of
multimodal sentiment detection and modality het-
erogeneity.

5.1 Multimodal Sentiment Detection

Multimodal sentiment detection has become a sig-
nificant research topic and previous works mainly
focus on fusing multimodal features with differ-
ent strategies. Some earlier works fuse the multi-
modal features by concatenation, such as HSAN
(Xu, 2017) and MultiSentiNet (Xu and Mao, 2017).
Later relevant works mainly focus on how to in-
tegrate modalities and promote better inter-modal
interaction. For example, CoMN (Xu et al., 2018)
designs a co-memory network to iteratively model
the interactions between image and text features,
TomBERT (Yu and Jiang, 2019) fuses the multi-
modal representations with a bilinear interaction
layer, Kumar and Vepa (2020) proposes to use gat-
ing mechanism and attention to perform deep mul-
timodal interaction, and MVAN (Yang et al., 2020)
adapts memory network to fuse the multimodal fea-
tures via perceptron and stacking-pooling module.
Recent work (Li et al., 2022) applies contrastive
learning and data augmentation to handle this prob-
lem. Different from these works, we aim to im-
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prove this task by tackling modality heterogeneity
from multiple views.

5.2 Modality Heterogeneity

Modality heterogeneity is reflected in that multiple
modalities show different properties. Typically, het-
erogeneity usually exists in human-generated sig-
nals (language) with high information density and
other natural signals modalities (e.g., image, video,
audio) with heavy redundancy. In the past few
years, some works have been done in multimodal
representation learning to alleviate the impact of
modality heterogeneity. Hazarika et al. (2020)
project different modalities to modality-invariant
representation space and learn their commonalities.
Furthermore, Wu et al. (2021); Zhao et al. (2021)
employs the modality translation method to con-
vert the source modality to the target one in order
to learn the commonalities between the different
modalities. However, due to the huge modality gap,
it is insufficient to handle multimodal heterogene-
ity by projecting different modal features into the
same representation space. To overcome the modal-
ity gap and encourage learning useful features, Li
et al. (2022); Lin and Hu (2022) design various
contrastive learning tasks to predict cross-modal
representation in an implicit way. However, they
are feature-level alignment and in coarse granular-
ity, which is not sufficient to address the problem
of feature shift.

6 Conclusion

In this paper, we present a Multi-View Calibra-
tion Network (MVCN) to address the modality
heterogeneity problem for text-image sentiment
detection from different views. Specially, we re-
spectively introduce the text-guided fusion mod-
ule to calibrate multimodal fusion and reduce the
negative impacts of redundant visual elements, a
sentiment-based congruity constraint task to further
calibrate the feature shift in representation space
and an adaptive loss calibration strategy to cali-
brate the training loss in terms of uncertain anno-
tated labels. The thorough experiments show the
MVCN achieves state-of-the-art performance on
two benchmark datasets.

Limitations

Considering Modality Heterogeneity can promote
many related multimodal applications, it is worth
continually exploring. In this paper, we propose

Text-Guided Fusion (TGF) module equipped with
Sparse-Attention to integrate different modalities
in representation aspects, which is an implicit way
to build the relations of fine-grained features, such
as visual objects, and textual words. Previous work
(Khademi, 2020; Wang et al., 2020) has proven that
Graph Convolutional Network (GCN) (Scarselli
et al., 2008) shows advantages in modeling the rela-
tions among visual and textual elements. Inspired
by these works, we argue that explicitly introducing
the relationship of fine-grained features via GCN
can better guide the model to eliminate redundant
features. Thus it can further narrow the modalities
gap and facilitate fusion for multimodal content
understanding. In the future, we will bring GCN to
learn multimodal relationships and boost the per-
formance of the model.
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